
FOR LOOP 

 

By far, the most utilized looping statement in C++ is the for statement. The for 

statement (also called a for loop) is ideal when we know exactly how many times we 

need to iterate, because it lets us easily define, initialize, and change the value of loop 

variables after each iteration. 

 

The for statement looks pretty simple in abstract: 
 
for (init-statement; condition-expression; end-expression) 

   statement; 

 

The variables defined inside a for loop 

have a special kind of scope called loop scope. 

Variables with loop scope exist only within the 

loop, and are not accessible outside of it. 

 

Evaluation of for statements 

A for statement is evaluated in 3 parts: 

1) The init-statement is evaluated. 

Typically, the init-statement consists of 

variable definitions and initialization. This 

statement is only evaluated once, when the 

loop is first executed. 

2) The condition-expression is evaluated. 

If this evaluates to false, the loop terminates 

immediately. If this evaluates to true, the 

statement is executed. 

3) After the statement is executed, the end-expression is evaluated. Typically, this 

expression is used to increment or decrement the variables declared in the init-

statement. After the end-expression has been evaluated, the loop returns to step 2. 

 

Let’s take a look at a sample for loop and discuss how it works: 
 
#include <stdio.h> 

 

int i; 

 

int main(void) 

{ 

  for(i = 1; i <= 10; i++) 

    printf("%d ",i); 

  printf("\n"); 

  return 0; 

} 

 

 

 

 

i = 1

i ≤ 10

printf(i)

i++

yes

no

init-statement

condition-

expression

TRUE

FALSE

statement

end-expression



Initialization i = 1. 

Iteration while condition i ≤ 10 is true, execute the body of the for loop: 
 printf("%d ",i); 

 i++; 

The loop stops when i = 11. For this value of i the condition i ≤ 10 becomes false. 

 

E-OLYMP 5325. Stand in order Print all integers from 1 to n inclusively. 

► Run variable i in the for loop from 1 to n and print i. 
 

E-OLYMP 8931. All OK  Count from 1 to n and for each number print the 

message OK. 

► Run for loop from 1 to n. 
 

E-OLYMP 8932. Marathon 2 Print numbers from a to b in increasing order. 

► Run for loop from a to b in increasing order. 
 

E-OLYMP 8933. All OK Count from n to 0 and for each number print the 

message sek. 

► Run for loop from n to 0 in decreasing order. 
 

E-OLYMP 8934. Marathon 3 Print numbers from a to b in decreasing order. 

► Run for loop from a to b in decreasing order. 
 

Find the sum of numbers from 1 to n: 
 
#include <stdio.h> 

 

int s, i, n; 

 

int main(void) 

{ 

  scanf("%d",&n); 

  s = 0; 

  for (i = 1; i <= n; i++) 

    s = s + i; 

  printf("%d\n",s); 

  return 0; 

} 

 

E-OLYMP 9551. Sum a * a + … + b * b Given numbers a and b. Find the sum a 

* a + … + b * b. 

► Run variable i in the for loop from a to b and sum the values of i * i. 
 

Let’s find the value of s after the for loop for the next program. Here variable i 

starts from 6, and runs with step 3, so i = 6, 9, 12, 15, 18, 21. If i is odd, it is added to 

the sum s. Initial value of s is not zero, it is 3. 

At each iteration first we process the body of the for loop, and then i is increased 

by 3. 
 

#include <stdio.h> 

https://www.e-olymp.com/en/problems/5325
https://www.e-olymp.com/en/problems/8931
https://www.e-olymp.com/en/problems/8932
https://www.e-olymp.com/en/problems/8933
https://www.e-olymp.com/en/problems/8934
https://www.e-olymp.com/en/problems/9551


 

int s, i; 

 

int main(void) 

{ 

  s = 3; 

  for (i = 6; i < 20; i = i + 3) 

    if (i % 2 == 1) s = s + i; 

  printf("%d\n",s); 

  return 0; 

} 

 

init 6 3

i s

1 iteration 9 3

2 iteration 12 12

3 iteration 15 12

4 iteration 18 27

5 iteration 21 27

6 is even, nothing is added to s

12 is even, nothing is added to s

s = s + i = 3 + 9 = 12

s = s + i = 12 + 15 = 27

21 < 20 is false, stop for loop
 

 

Omitted expressions 

It is possible to write for loops that omit any or all of the expressions. For example: 
 
#include <stdio.h> 

 

int main(void) 

{ 

  int count = 0; 

  for ( ; count < 10; ) 

    printf("%d ",count++); 

  printf("\n"); 

  return 0; 

} 

 

Rather than having the for loop do the initialization and incrementing, we've done 

it manually. We have done so purely for academic purposes in this example, but there 

are cases where not declaring a loop variable (because you already have one) or not 

incrementing it (because you’re incrementing it some other way) are desired. 

 

Although you do not see it very often, it is worth noting that the following example 

produces an infinite loop: 
 
for (;;) 

  statement; 

 

 



Process the sequence of numbers 

E-OLYMP 5328. Find minimum Given sequence of n integers. Find their 

minimum. 

Sample input Sample output 
4 

5 8 -4 6 

-4 

 

► Let’s initialize the minimum value mn (result of the program) with some big 

value, called infitity (∞). Let is be mn = 2000000000 (2 * 109, this value is about the 

upper value for int data type). Now for each value val, if it is less then mn, assign val to 

mn. 
 
#include <stdio.h>  

 

int i, n, val, mn; 

 

int main(void)  

{  

  scanf("%d",&n); 

  mn = 2000000000; // initialize mn with max value 

  for(i = 1; i <= n; i++) 

  { 

    scanf("%d",&val); 

    if (val < mn) mn = val; 

  } 

  printf("%d\n",mn); 

  return 0; 

} 

 

E-OLYMP 7829. Sum of elements Given sequence of n real numbers. Find the 

their sum. 

► Use for loop to read n real numbers and find their sum. 

 

Multiple test cases 

Find the sum of two numbers. First line contains the number of test cases t. Each 

test consists of two integers a and b. For each tests case print in a separate line the sum 

of two numbers a and b. 

 

Sample input Sample output 
3 

2 3 

17 -18 

5 6 

5 

-1 

11 

 
#include <stdio.h> 

 

int i, k, a, b; 

 

int main(void) 

{ 

https://www.e-olymp.com/en/problems/5328
https://www.e-olymp.com/en/problems/7829


  scanf("%d",&k); 

  for(i = 0; i < k; i++) 

  { 

    scanf("%d %d",&a,&b); 

    printf("%d\n",a+b); 

  } 

  return 0; 

} 

 

Multiple declarations 

Although for loops typically iterate over only one variable, sometimes for loops 

need to work with multiple variables. When this happens, the programmer can make use 

of the comma operator in order to assign (in the init-statement) or change (in the end-

statement) the value of multiple variables: 
 
#include <stdio.h> 

 

int i, j; 

 

int main(void) 

{ 

  for (i = 0, j = 9; i < 10; i++, j--) 

    printf("%d %d\n",i,j); 

  return 0; 

} 

 

This loop assigns values to two previously declared variables: i to 0, and j to 9. It 

iterates i over the range 0 to 9, and each iteration i is incremented and j is decremented. 

 

 

Break and Continue 
 

Break 

It is sometimes desirable to skip some statements inside the loop or terminate the 

loop immediately without checking the test expression. The break statement terminates 

the loop (for, while) immediately when it is encountered. The break statement is used 

with decision making statement such as if…else. 



  
Next program calculates the sum of integers until user enters nonnegative number. 
 
#include <stdio.h> 

 

int s, x; 

 

int main(void) 

{ 

  s = 0; 

  while(true) 

  { 

    scanf("%d",&x); 

    // if user enters negative number, loop is terminated 

    if (x < 0) break; 

    s = s + x; 

  } 

  printf("%d\n",s); 

  return 0; 

} 

 

Continue 

The continue statement skips some statements inside the loop. The continue 

statement is used with decision making statement such as if…else. 
 

 



  
Next program calculates the sum of maximum of 5 numbers. Negative numbers are 

skipped from calculation. 
 
#include <stdio.h> 

 

int i, s, x; 

 

int main(void) 

{ 

  s = 0; 

  for(i = 0; i < 5; i++) 

  { 

    scanf("%d",&x); 

    // if user enters negative number, loop is continued 

    if (x < 0) continue; 

    s = s + x; 

  } 

  printf("%d\n",s); 

  return 0; 

} 

 

 

QUIZ 1. What is the answer in the next part of the code? 

 
s = 2; 

for (i = 3; i <= 11; i += 2) 

  s = s + 3; 

printf("%d\n", s); 

 

 

s = 5; 

for (i = 5; i < 20; i += 5) 

  s = s + 2; 

printf("%d\n", s); 



 

 

s = 1; 

for (i = 15; i > -5; i -= 5) 

  s = s * 2; 

printf("%d\n", s); 

 

 

s = 1; 

for (i = 8; i > -2; i -= 3) 

  s = s * 3; 

printf("%d\n", s); 

 

 

QUIZ 2. What is the answer in the next part of the code? 
 

s = 0; 

for (i = 3; i < 20; i += 3) 

{ 

  s = s + 3; 

  i = i + 2; 

} 

printf("%d\n", s); 

 

 

s = 1; 

for (i = 5; i < 25; i += 4) 

{ 

  s = s + 2; 

  i++; 

} 

printf("%d\n", s); 

 

 

 

 


